If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1x^2+7x=-11
We move all terms to the left:
1x^2+7x-(-11)=0
We add all the numbers together, and all the variables
x^2+7x+11=0
a = 1; b = 7; c = +11;
Δ = b2-4ac
Δ = 72-4·1·11
Δ = 5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{5}}{2*1}=\frac{-7-\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{5}}{2*1}=\frac{-7+\sqrt{5}}{2} $
| 3(x+2)=5(x+10) | | -28=k+3 | | 1/2x+3=7/4x+9/4 | | x+3/2x+2=2x+2/4x-2 | | 0.78x+14.99=224.03 | | 2x/x-1+1/3=5/6+2/x-1 | | (11-x)3-x3=0 | | 1x^2+7x-3=0 | | -5(w+5)=-7w-31 | | 3/4x+12=1/4x+18 | | -3x+49=5(x+5) | | 1x^2+3x-3=0 | | [-1-2y=7y+8 | | 6x-(2x+8)=4 | | -8y=5y^2-4 | | 10x-6=2x-10 | | 7125=x(x+20) | | 12x=3x-6 | | 3-4(x-1)=10 | | 5x+x-23=3x34 | | 2(6z+2)-7=93 | | (v+7)^2-75=0 | | 8n–5=3n+10 | | 1x7=18 | | 6n-11=3n+33 | | 52=31-3(x-2) | | 6n—11=3n+33 | | 4x^2+6x+1=5 | | x³=0 | | x+19=-(4x+7) | | 1/4x^2+8x-17=0 | | X2(x2-18x+80)=0 |